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Abstract. This work deals with the study of ill-posed inverse problems involved in many signal processing areas

and image analysis. Indeed, the image degradation during the data acquisition process is inevitable. The degra-

dation can be introduced by the imaging process, the image recording, the image transmission, etc. To restore the

original image, we should provide supplementary information. This can be done by adding a regularization term.

In this context, several regularization techniques have been developed. In particular, Tikhonov regularization

and the total variation TV are popular, and their success is confirmed. In this paper a comparative study con-

cerns Tikhonov regularization, first and second order Total Variation TV2 and combined TV+TV2. A particular

attention is devoted to learn to regularization parameters via machine learning approach.
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1 Introduction

Inverse problem consists of using the observation of a response of an object to infer the values of
the parameters that characterize this object. Examples of such problems appear in wide variety
of scientific problems. Unlike to the direct problem which is well posed, the inverse problem is
ill-posed in the sens of Hadamard (1923). This explains the extensive theoretical an numerical
studies of inverse problems appear in many realistic applications fields. We cite some recent
papers for different fields (Afraites & Atlas, 2015; Chakib et al., 2012, 2013; Begram et al., 2019;
Nachaoui et al., 2016) and some monograph (Borcea et al., 2015; Kabanikhin, 2012; Ito & Jin,
2015; Kern, 2016; Gockenbach, 2012).

A general inverse problem in imaging reads as follows. Let o ∈ H be a measured data in a
suitable of functions defined on a domain Ω. We seek for the original or reconstructed image f
that fulfills the model:

o = Af + b, (1)

where A is a linear operator defined in the space H, and b denotes a possible noise component.
The operator A represent the forward operator of this problem. Examples are blurring operators
(in which case Af denotes the convolution of f with a blurring kernel κ). To reconstruct f one
has to invert the operator A. This is not always possible since in many applications the problem
can be highly ill posed and further complicated by interference like noise. Indeed, we know that
by using the Fourier transformation, the convolution becomes a simple product (term by term).
Thus, the equation (1) becomes:

F(o) = F(κ)F(f) + F(b), (2)
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where F denotes the Fourier transformation.

Insofar as the spectrum of F(κ) has no zero, there is existence and uniqueness of the solution
F(f). This can be calculated by simple inversion:

F(f) = F(κ)−1F(o)−F(κ)−1F(b). (3)

Solving the problem (1) by this (naive) method gives the result presented in the Figure 3.

(a) (b) (c)

Figure 1: Naive Method: (a)original image ,(b) image degraded by a motion blur and noise by an
additive Gaussian noise of variance σ = 0.0001,(c) restored image with the equation (3)

There is great noise amplification. Unfortunately, the term F(κ)−1F(b) dominates in this
equation (3). Even if the noise is slight, it is amplified when reversing F(κ). Indeed, κ modeling
a low-pass filter, F(κ) has very low values at high frequencies. So in this case, a common
procedure in inverse problems is to add apriori information to the model. This information
can be given in general by certain regularity assumption on the image f . Hence, instead of
solving (1) one computes f as a minimiser of the following regularized problem

argmin
f

∥Af − o∥22 + R(f)︸ ︷︷ ︸
reguralization

. (4)

Regularization methods are a key tool in the solution of inverse problems Engl et al. (1996).
Indeed, they are used to introduce prior knowledge and make the approximation of ill-posed
problems feasible. In the case of imaging problem the term R(f) must be able to fulfill
the lack of information caused by the fact that the noise b is unknown. This explains the
wide related works investigate the form of the regularization term R(f) without claiming to
be exaustive we cite some recent works (Alahyane et al., 2019; Dabrock & Van Gennip, 2018;
De los Reyes & Schünlieb, 2013; El Mourabit et al., 2017; Laghrib et al., 2016, 2019, 2015, 2018;
Papafitsoros & Schünlieb, 2014; Yehu, 2020). One of the most used regularization for inverse
problems in general is the so called Tikhonov regularization (Tikhonov & Arsenin, 1978). This
technique of regularization have attracted particular interest in the last years and link to other
fields like image processing. It is formulated as follows: for all α > 0.

argmin
f

∥Af − o∥22 + α∥∇f∥22. (5)

The goal is not only to adjust f to approach o, but also impose that the gradient to be
”small enough” (depending on the parameter α). Thanks to this regularization, solutions
will be regulars (in the space H) and will have small variations and therefore poorly de-
fined edges. This variational formulation used to address the shortcomings of the approach
of the inverse filter and overcome his sensitivity to noise, gave birth to several algorithms like
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Wiener filtering (Lim & Oppenheim, 1979), SECB method (Carasso, 1999), Richardson-Lucy
algorithm (Richardson, 1972; Lucy, 1974), and many others.

An alternative to Tikhonov regularization (that is too brutal), it’s the ROF (Rudun, Osher
and Fatemi) model Rudin et al. (1992), it involves replacing the regularization term ∥∇f∥22
by a less restrictive and regularizing standard. In the following, we will consider a first and
second order total variation (TV ) and (TV 2) regularization framework. The main point of this
combination mainly consists of preserving the essential features of the image such as boundaries
and corners that are degraded, using other approaches.

In any regularization method the choice of parameter α is crucial for the design of an image
reconstruction model fitting appropriately the given data. Recently, some authors determine an
optimal regularization procedure introducing particular knowledge of the noise distribution into
the learning approach (Van Chung et al., 2017; De los Reyes et al., 2013; Dong et al., 2011). In
this context, we will combine machine learning and variational regularization techniques to learn
the parameters realization of the first and second total variation. In particular we will use the
idea proposed in Lyaqini et al. (2020) to learn the optimal regularization parameter.

The outline of the paper is as follows. In Section 2, we present the total variational model
and we detail its dicretization. In section 3 we derive the proposed algorithm, and in Section 4,
we present the second order total variation model and its dicretization. Section 5 is devoted to
the combined total variation (TV ) + (TV 2). In section 6 we present some experimental results;
in addition, we present our methodology to learn optimal regularization parameters. We finally
end the paper by a conclusion.

2 Total variation model

Variational methods have proven to be particularly useful to solve a number of ill-posed inverse
imaging problems.

The introduction of the total variation had a lasting impact in imaging sciences and was used
for various tasks including denoising, deblurring and segmentation. The major advantage of the
total variation is that it allows for sharp discontinuities in the solution. This is of vital interest
for many imaging problems, since edges represent important features, e.g. object boundaries or
motion boundaries. As a prototype for total variation methods in imaging we recall the total
variation based image denoising model proposed by Rudin et al. (1992). The ROF model is
defined as the variational problem

arg min
f∈BV (Ω)

∥Af − o∥22 + αTV (f). (6)

Here the regularization term is TV (f) total variation of f is given by

TV (f ; Ω) := sup

{∫
Ω
f divφdx;φ ∈ C1(Ω), ∥φ∥ ≤ 1

}
. (7)

Note that when the function f is in

W 1,1(Ω) = {f ∈ L1(Ω),∇f ∈ L1(Ω)} ⊂ BV (Ω).

The total variation is none other than TV (f) = ∥∇f∥1. Here ∥∇f∥p denotes the usual norm of
Lp(Ω).

Theorem 1. Assuming that the operator A : L2(Ω) 7→ L2(Ω) is continuous and A does not
cancel the constants, especially (A.1 ̸= 0). The minimization problem (7) has a unique solution
f ∈ BV (Ω).

Proof. see Laghrib et al. (2015).
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2.1 Discretization of the problem TV

The discretization is an essential step to solve the minimization problem (7). Lets gives some
notations. We denote by Xij , i = 1, . . . , N, j = 1,l dots,M the discrete image, and X = RN×M

all discrete images of size N×M and Y = X ×X . The spaces X and Y are respectively provided
the scalar product < ., . >X and < ., . >Y where

∀X,Y ∈ X , < X, Y >X=

N∑
i=1

M∑
j=1

Xi,jYi,j ,

and

∀p = (p1, p2), q = (q1, q2) ∈ Y, < p, q >Y=

N∑
i=1

M∑
j=1

p1i,jq
1
i,j + p2i,jq

2
i,j .

The gradient vector of X denoted by ∇X is defined on Y as follows ∇X = ((∇X)1, (∇X)2),
with

(∇X)1i,j =

{
Xi+1,j −Xi,j if i < N
0 i = N

, (∇X)2i,j =

{
Xi,j+1 −Xi,j if j < M
0 j = M

(8)

The associated operator of −∇ is defined as follows
div : X 2 → X such that for p = (p1, p2) ∈ X 2, we have

∀ω ∈ X , < div p, ω >= − < p,∇ω >,

where the gradient is defined by the equation (8), then

(div p)i,j = (div p)1i,j + (div p)2i,j ,

where

(div p)1i,j =


p1i,j − p1i−1,j si 1 < i < N

p1i,j si i = 1

−p1i−1,j si i = N

, (div p)2i,j =


p2i,j − p2i,j−1 si 1 < j < M

p2i,j si j = 1

−p2i,j−1 si j = M

(9)

The discrete version of the regularization TV , represented by J reads as follows

J(X) =

N∑
i=1

M∑
j=1

|(∇X)i,j |,

where |.| is the Euclidean norm of R2, defined as follows

|(∇X)i,j | = |
(
(∇X)1i,j , (∇X)2i,j

)
| =

√(
(∇X)1i,j

)2
+
(
(∇X)2i,j

)2
.

To solve the problem with the TV regularization (7), several numerical optimization algorithms
were developed especially for the model where it is assumed that the noise is Gaussian. These
algorithms are too many to list them all here. One can for example refer to Zhu et al. (2010);
Goldstein & Osher (2009); Chambolle (2004). In this work we use the gradient descent algorithm
Nocedal & Wright (2006).
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3 Optimization algorithm

We consider the general problem:
find f∗ ∈ BV (Rmn) such that

J(f∗) = min
f∈BV (Rmn)

J(f), (10)

where J is continuously differentiable functional on Rnm. To solve the TV problem we use the
classical Steepest descent algorithm Nocedal & Wright (2006). This method is summarized in
in the following algorithm

Algorithm 1: Optimal gradient steepest

Require: f0: We start by random f0,
Ensure: f∗: solution of the problem 10
while the stopping criterion is not satisfied do

- at the step k
fk+1 = fk − δtk∇J(fk)

where δtk ∈ R is: argmin
δt

J(fk − δt∇J(fk)).

end while

The algorithm is stopped when convergence test is true, or if a maximum number of iterations
is exceeded. A convergence test could depend on an error (relative or absolute). Let

min
f∈Rnm

1

2

n∑
i=0

m∑
j=0

|(Af)i,j − oi,j |2 + α

√(
(∇f)1i,j

)2
+
(
(∇f)2i,j

)2
, (11)

where (∇f)1i,j and (∇f)2i,j are defined in the equation (8).

To apply the algorithm 1, we must compute ∇J(fk) After standard computations we obtain

∇J(f) = AT (Af − o) +

−div

 ∇f√
((∇f)1)2 + ((∇f)2)2 + ε2


i,j

, (12)

where the division should be understood as a term by term division. We will see in the numerical
results, the regularization TV type is very effective to remove the blur and noise. However, it
still suffers from the effect called staircaising. For this, the introduction of higher order model
would be better.

4 Second order Regularization

The placing of the two order will allow us to sufficiently smooth the regular part of the image, to
get rid of staircasing effect, while generating an acceptable blur, preserving information about
the contours of the image. The image restoration problem f with TV 2 regularization is defined
as follows

f̂MAP = argmin
f∈HB(Ω)

1

2
∥ Af − o ∥22 +αTV 2(f). (13)

The natural space for which we are seeking a solution is the space W (Ω), defined as

W (Ω) =
{
f ∈ L2(Ω);∇2f ∈

[
L1(Ω)

]4}
.

As for the problem with the legalization TV, this space is not reflexive since the space L1(Ω)
is not. However, an interesting point is that bounded sequences in W (Ω) are bounded in space
bounded Hessian HB(Ω) Demengel & Temam (1984) defined by

HB(Ω) = {f ∈ W 1,1(Ω)/∇f ∈ (BV (Ω))2}. (14)

Then we could use the compactness properties in this space. We then have the following theorem
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Theorem 2. Suppose the operator A : L2(Ω) 7→ L2(Ω) is continuous and injective, with (A.1 ̸=
0). The minimization problem (13) has a unique solution f ∈ HB(Ω).

Proof. see Laghrib et al. (2015).

4.1 Discretization and optimization of the problem TV 2:

Let

R(f) = α ∥ ∇2f ∥1

As for the problem with TV , the discretization of the problem with TV 2 is the same way, using
finite difference schemes. We use the alternative approach proposed in Rudin et al. (1992), based
on the discretization of the PDE obtained by the method of gradient descent Nocedal & Wright
(2006). Using variations of computational techniques, we find the PDE associated with the
problem (13) with periodic conditions on δ (we denote M = n ×m the image size). Similarly
the problem TV after discretization of the problem, one must calculate δtR to apply the gradient
descent method.  δtR = div2

(
∇2f

|∇2f |

)
in Ω,

f(0, y) = f(m, y), f(x, 0) = f(x, n) in δΩ,
(15)

where div2 is the second order divergence operator, satisfying the following properties

div2X · Y = X · ∇2Y ∀Y ∈ RM , X ∈ (RM )4,

where ”·” is the Euclidean product. Since the problem (13) is convex, the solution obtained by
the gradient descent method coincides with that of the associated PDE. Let

fi,j the discrete image of f , such that fi,j = f(i, j), i = 1...m, j = 1...n. We define the
second order denoted ∇2 as follows

∇2X = (∇xxX ∇xyX ∇xy X∇yyX),

where

∇xxXi,j =


Xi,n − 2Xi,1 +Xi,2 si 1 ≤ i ≤ m, j = 1
Xi,j−1 − 2Xi,j +Xi,j+1 si 1 ≤ i ≤ m, 1 < j < n
Xi,n−1 − 2Xi,n +Xi,1 si 1 ≤ i ≤ m, j = n,

∇yyXi,j =


Xm,j − 2X1,j +X2,j si 1 ≤ j ≤ n, i = 1
Xi−1,j − 2Xi,j +Xi+1,j si 1 ≤ j ≤ n, 1 < i < m
Xm−1,j − 2Xm,j +X1,j si 1 ≤ j ≤ n, i = m,

on the other hand we have

∇xyXi,j =


Xi,j −Xi+1,j −Xi,j+1 +Xi+1,j+1 si 1 ≤ i < m, 1 ≤ j < n
Xi,n −Xi+1,n −Xi,1 +Xi+1,1 si 1 ≤ i < m, j = n
Xm,j −X1,j −Xm,j+1 +X1,j+1 si i = m, 1 ≤ j < n
Xm,n −X1,n −Xm,1 +X1,1 si i = m, j = n.

Furthermore, for X = (X1, X2, X3, X4) ∈ (RM )4, we define the operator div2 as follows

(div2X)i,j = ∇xx(X1)i,j +∇yy(X2)i,j +∇xy(X3)i,j +∇xy(X4)i,j .
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where

∇xx = ∇xx, ∇yy = ∇yy

and

∇xyXi,j =


X1,1 −X1,n −Xm,1 +Xm,n si i = 1, j = 1
X1,j −X1,j−1 −Xm,j +Xm,j−1 si i = 1, 1 < j ≤ n
Xi,1 −Xi−1,n −Xi−1,1 +Xi−1,n si 1 < i ≤ m, j = 1
Xi,j −Xi,j−1 −Xi−1,j +Xi−1,j−1 si 1 < i ≤ m, 1 < j ≤ n

Finally, we all determined, it remains to solve the equation (15) by applying the algorithm 1.
We will see later, in the part of numerical results, the type of regularization model TV 2 provides
a very effective solution to staircaising. However, the restored image is slightly degraded by
the appearance of the blur. This leads us to look for other adjustments where we can balance
between removing the staircasing effect and the appearance of the blur. Hence the introduction
of mixed models we present an example, the model where we combine the regularization TV
with TV 2.

5 Combination of regularization TV and TV 2

To fight against the blur problem that appears in the regularization TV 2, one idea is to exploit
the benefits of regularization TV 2 (reduced scairtasing) and also preserve image details by
exploiting benefits of TV regularization. We define the problem of restoration of the image f
from o in the following way:

f̂MAP = argmin
f

1

2
∥ Af − o ∥22 +αTV (f) + βTV 2(f)

f̂MAP = argmin
f

1

2
∥ Af − o ∥22 +α

∫
Ω

F (∇f) dx+β

∫
Ω

G(∇2f) dx (16)

with α et β are positive parameters, and F : R2 → R+ , G : R4 → R+ are convex functions with
at least one linear growth at infinity, ie

∃k1, k′1 > 0/∀X ∈ R2, k1|X|2 − k′1 ≤ F (X) ≤ k1|X|2 + k′1

and

∃k2, k′2 > 0/∀X ∈ R2, k2|X|2 − k′2 ≤ G(X) ≤ k2|X|2 + k′2,

where |.|2 is the Euclidean norm on R2 and R4 respectively. These two conditions ensure that
if ∇f ∈ [L1(Ω)]2 then ∥ F (∇f) ∥1 is well defined, and and that if ∇2f ∈ [L1(Ω)]4, thus
∥ G(∇2f) ∥1,is also well defined. Moreover, these two conditions are also needed to show the
coercivity. We note with J function to minimize, defined as

J(f) =
1

2
∥ Af − o ∥22 +α

∫
Ω

F (∇f) dx+β

∫
Ω

G(∇2f) dx . (17)

This function is well defined on the space W 2,1(Ω). Since this space is not reflexive, we can
not use direct methods of calculating variations to prove the existence of a solution. However,
relaxation techniques we use: we will extend the function J on a space larger than the space
W 2,1(Ω), with interesting properties compactness compared with a well defined topology. As
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in the case of regularization of order 2, we will work in space HB(Ω)). We now extends the
function J on space HB(Ω) as follows

Jet(f) =

{ 1
2 ∥ Af − o ∥22 +α

∫
Ω

F (∇f) dx+β
∫
Ω

G(∇2f) dx si f ∈ W 2,1(Ω)

+∞ si f ∈ HB(Ω) \W 2,1(Ω).

(18)

We denote by χΩ the characteristic function of Ω.

Theorem 3. Assume that A(χΩ ̸= 0), α > 0, β > 0, the minimization problem reads as follows

min
f∈HB(Ω)

J(f), (19)

admits a unique solution unique in HB(Ω).

Proof. see (Papafitsoros & Schünlieb, 2014).

5.1 Discretization and optimization of the problem TV + TV 2:

We consider for each element X = (X1, X2) ∈ (Rm×n)2

∥ X ∥1=
m∑
i=1

n∑
j=1

√
(X1(i, j))

2 + (X2(i, j))
2.

We first begin with the discretization of the gradient operator ∇X = ((∇X)1, (∇X)2) such that
Xi,j , i, j = 1, ...(m,n) is the discrete image, and Rn×m the set of the discrete images.

(∇X)1i,j =

{
Xi+1,j −Xi,j si i < m
0 si i = m,

(∇X)2i,j =

{
Xi,j+1 −Xi,j si j < n
0 si j = n.

We also need to define the discretization of the adjoint operator of the gradient ” div ” :
(Rm×n)2 → Rm×n”, satisfying the following relationship

−div Y.X = Y.∇X, ∀X ∈ Rm×n, Y ∈ (Rm×n)2

with

div(Y 1, Y 2)i,j = (div(Y 1, Y 2))1i,j + (div(Y 1, Y 2))2i,j

and

(div(Y 1, Y 2))1i,j =


Y 1
i,j − Y 1

i−1,j si 1 < i < m

Y 1
i,j si i = 1

0 si i = m

(div(Y 1, Y 2))2i,j =


Y 2
i,j − Y 2

i,j−1 si 1 < j < n

p2i,j si j = 1

−p2i,j−1 si j = M.

We define also in same way the Hessian operator ”∇2”, as follows

∇2X = (∇xxX ∇xyX ∇xy X∇yyX),
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where

∇xxXi,j =


Xi,n − 2Xi,1 +Xi,2 si 1 ≤ i ≤ m, j = 1
Xi,j−1 − 2Xi,j +Xi,j+1 si 1 ≤ i ≤ m, 1 < j < n
Xi,n−1 − 2Xi,n +Xi,1 si 1 ≤ i ≤ m, j = n

∇yyXi,j =


Xm,j − 2X1,j +X2,j si 1 ≤ j ≤ n, i = 1
Xi−1,j − 2Xi,j +Xi+1,j si 1 ≤ j ≤ n, 1 < i < m
Xm−1,j − 2Xm,j +X1,j si 1 ≤ j ≤ n, i = m

in the other hand we have

∇xyXi,j =


Xi,j −Xi+1,j −Xi,j+1 +Xi+1,j+1 si 1 ≤ i < m, 1 ≤ j < n
Xi,n −Xi+1,n −Xi,1 +Xi+1,1 si 1 ≤ i < m, j = n
Xm,j −X1,j −Xm,j+1 +X1,j+1 si i = m, 1 ≤ j < n
Xm,n −X1,n −Xm,1 +X1,1 si i = m, j = n.

Moreover, for X = (X1, X2, X3, X4) ∈ (RM )4, we define the operator div2 as follows

(div2X)i,j = ∇xx(X1)i,j +∇yy(X2)i,j +∇xy(X3)i,j +∇xy(X4)i,j ,

where

∇xx = ∇xx, ∇yy = ∇yy

and

∇xyXi,j =


X1,1 −X1,n −Xm,1 +Xm,n si i = 1, j = 1
X1,j −X1,j−1 −Xm,j +Xm,j−1 si i = 1, 1 < j ≤ n
Xi,1 −Xi−1,n −Xi−1,1 +Xi−1,n si 1 < i ≤ m, j = 1
Xi,j −Xi,j−1 −Xi−1,j +Xi−1,j−1 si 1 < i ≤ m, 1 < j ≤ n.

Having defined all the discretized operators needed to solve the problem TV +TV 2, it remains
only to apply an optimization algorithm such as gradient descent algorithm 1.

6 Parameter learning and numerical results

To show the performance of the approaches mentioned above, we choose to do a synthetic test
on the image of the cameraman (figure 2), we destroy the original image by adding a blur using
a convolution kernel that simulates a blur circular with a radius r defined. Can we disrupt the
image blurred by adding a white stone additive Gaussian noise variance of σ = 0.0001.

Note that the image of the cameraman suffered severe damage and so many details that have
been destroyed and so more information is lost. Obviously, the choice of algorithm parameters
affects the quality of the restored image. And especially for the α of TV model, the β model
TV 2 and couple (α, β) for the mix model TV +TV 2. To do this, we will learn these parameters
to find the optimal choice.
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(a) Cameraman psnr=20.5834 ssim=0.1030 (b) Lenna psnr=25.4621 ssim=0.2681

Figure 2: Image test

6.1 Bi-level optimization for parameter learning

A well-known example of parameter optimization problems is supervised machine learning. In
our general learning problem, we look for (α, β) solving the problem

min
(α,β)∈[α,α]×[β,β]

Ψ(fα,β) (20a)

subject to

fα,β ∈ argmin
f∈HB(Ω)

J(f, α, β). (20b)

The problem (20a)(20b) is the so called bi-level problem. For training data I with desired
reconstruction f̃ ∈ I, we consider a loss function Ψ that estimates the discrepancy between f̃
and the reconstruction fα,β. Generally, Ψ is expressed in L2 norm. However, recently it was
proved in Lyaqini et al. (2020) that the non-smooth loss functions as L1 norm for supervised
learning problem give more consistent results. In this case we define our loss function as

Ψ(fα,β) :=
∑
k∈I

∥f̃k − fk
α,β∥1. (21)

Note that the lower problem (20b) is non-smooth and the same for the upper problem (20a).
For the lower problem we use the smoother C2-Huber regularized version of the total varia-
tion De los Reyes et al. (2013). More precisely, we consider for γ >> 1 the C2 Huber-type
regularization of the

hγ(z) :=


z
|z| if γ|z| − 1 ≥ 1

2γ
z
|z|(1−

γ
2 (1− γ|z|+ 1

2γ )
2) if γ|z| − 1 ∈ (− 1

2γ ,
1
2γ )

γz if γ|z| − 1 ≤ − 1
2γ .

(22)

For the cost functional Ψ we will use the smoothed method used in Lyaqini et al. (2020),

|z|ε =
√
z2 + ε. (23)

As in classical bi-level optimization, sin the lower problem (20b) is convex, the problem (20a)-
(20b) will changed equivalently to a single optimization where the lower problem is replaced by
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its first order optimality conditions. A necessary and sufficient optimality condition for (20b) is
then given by the following equation

(Af − b, w) + α(hγ(∇f),∇w) + β(hγ(∇2f),∇2w) = 0. (24)

(a) Learning parameter α, β = 0

(b) Learning parameter β, α = 0

(c) Learning parameter (α, β)

Figure 3: The loss function with respect to the free parameters.
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Figure 4: PSNR Variation with respect to the iterations number for different values

of α for the TV model

Figure 5: PSNR Variation with respect to the iterations number for different values

of β for the TV 2 model

Figure 6: PSNR Variation with respect to the iterations number for different values

of (α, β) for the TV + TV 2 model

To derive to optimality conditions for the problem (20a) subject to (24) we define the La-
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grangian function

L(α, β, f, p) := Ψ(f) + (Af − b, p) + α(hγ(∇f),∇p) + β(hγ(∇2f),∇2p). (25)

By derivation of L with respect to α, β and f and make it equal to zero we obtain the following
aptimality system
Adjoint

(A∗p, w) + α(h′γ(∇f)∇p,∇w) + β(h′γ(∇2f)∇2p,∇2w) = 0, for all w ∈ H2(Ω). (26a)

Gradient 
∫
Ω
hγ(∇f)∇pdx(α− α1) ≥ 0∫

Ω
hγ(∇2f)∇2p(β − β1) ≥ 0

(26b)

for all α1 ∈ [α, α] and β1 ∈ [β, β].
For the determination of the optimal parameter values we consider a decent gradient method,

together with an Armijo backtracking line search rule. We distinguish between three cases. Just
TV which means that β = 0 and we look for the optimal α. Just TV 2,which means that α = 0
and we look for the optimal β. Finally, for the combined TV +TV 2 we look for (α, β). In figure 3
we present the evolution of the loss function with respect of free parameter in each case.

The figures (4,6,16) show the influence of parameter regularization on the picture quality
”cameraman” in terms of psnr for 1000 iterations.

6.2 Comparison results

For all algorithms, we took care to choose the best settings that make the walk the best possible
algorithm. These parameters are in fact those who give the highest values in Figures 6, 5, 4. The
figure 7 illustrates a comparison between different image restoration methods that we detailed,
and other algorithms in the state of art.

Whether the vision or the values of PSNR and SSIM, the mixed model TV +TV 2 has proven
effective (zoom on images to note the difference). Indeed, we note that other algorithms produce
artifacts on the restored image, for example the Wiener algorithm, eliminating the noise was
not really satisfactory, while the Richardson-Lucy algorithm produces the ringing artifact that
can be observed on the edges of the image, the TV has given considerable results but it still
suffers from the effect of scairtasing the madman has also infected the image restored by the
model TV 2.
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(a) Wiener PSNR=20.4900 ssim =0.2103 (b) Richardson-Lucy PSNR=22.5998 ssim
=0.2672

(c) TV PSNR=25.2933 ssim =0.3421 (d) TV2 PSNR=24.5915 ssim =0.3160

(e) TV+TV2 PSNR=25.3329 ssim =0.3488

Figure 7: Restoration of the cameraman image using different deconvolution methods.

7 Conclusion

In this work we have investigate a variational approach to solve an inverse problem appears
in image processing. More precisely we have deal with a restoration of blurred and degraded
images. To solve this ill-posed problem we have opted of regularization techniques. In this case,
tree type of regularization have been studied. Namely Thikhonv, total variational (TV ) and
second order total variational (TV 2) an the combined (TV + TV 2) have been investigated. In
particular, we have learned the regularization parameters by considered the bi-level optimization
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combined with machine learning. The effectiveness of our approach have been proved via the
presentation of some numerical.
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